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1. INTRODUCTION

In this paper we consider a convex function f: (a, b) ..... R, where
-00 ~ a < b ~ 00. We recall that I is convex if for all XI' Xz E (a, b) and
ai' a z >°such that a l + a z = 1,

f is strictly convex if, in addition, whenever alx l + UzXz is strictly between
XI and Xz,

If I is convex, it is continuous; its left and right derivatives, f'- and /'+,
exist, are finite, and are non-decreasing; f'- ~ f'+, and except for at most
countably many X E (a, b), f'_(x) = f'(x) = f'+(x).

Jensen's inequality can be stated as follows:
Suppose that I is convex on (a, b). Then, for X 1"'" x n in (a, b) and

PI"'" Pn>O, PI + .. , + Pn > 0,

The inequality in the title of the paper states that, under the additional
assumption of monotonicity of f, there is a specific point in (a, b) at which
the value of I is greater than or equal to the right-hand side of (l).

THEOREM 1. Suppose that I is convex and increasing on (a, b).
Then lor XI'"'' Xn E (a, b), PI"'" Pn>0, PI + ... + Pn > 0, and
pJ!,+(xl ) + ... + Pnf'+(xn) > 0, we have

pJ!(X I ) + + Pnl(xn) &1 (PI/'+(X1)X1+ +Pnf+(Xn)Xn). (2)
PI + + Pn '<: Plf'+(xl ) + + Pnf'+(xn)
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A more general version of Jensen's inequality can be stated as follows:
Suppose that f is convex on (a, b), that (E, g,p,) is a probability measure

space, and that X: (E, g) --+ (a, b) is measurable. If X and foX are in L(p,),
then

f (t X dp, ) ~ t (f 0 X) dp,.

The corresponding generalization of Theorem 1 is

(3)

(4)

THEOREM 2. Suppose that f is convex and increasing on (a, b). Suppose
also that X: (E, g) --+ (a, b) is measurable, that foX, f'+ 0 X, and
(f'+ 0 X) X are in L(P) and that f E(f'+ 0 X) dp, >O. Then

f (f 0 X) dp, ~ f (fAf'+, 0 X) X dp, ) .
E f E(f + 0 X) dp,

If, in addition we assume that f is strictly convex, then equality holds in (4)
if and only if X is constant p, a.e.

Both theorems remain valid if at any occurrence of 1'+ (x) we write instead
any value in the interval [f'_(x), f~(x)]. Note merely that inequalities (5)
and (6) below, on which the proofs depend, continue to hold with such
replacement. ("1'+" was chosen for ease in stating the theorems.)
Furthermore, both theorems are also true if f is a convex and decreasing
function; the only changes needed in the hypotheses are to require
pJ'+(x J) + ... +Pnf'+(xn) < 0 in Theorem 1, and fEf'+ 0 X dp, < 0 in
Theorem 2. For if f: (a, b) --+ R is a convex and decreasing function, then
J (-b, -a) --+ R, defined by l(x) = f(-x), is a convex and increasing
function, and Theorems 1 and 2 applied to I yield the same theorems with f,
just as before.

In Section 2, inequalities (2) and (4) will be established and the case of
equality will be discussed. Section 3 contains several applications. Section 4
contains concluding remarks.

2. THE PROOFS OF THE COMPANION INEQUALITIES

The proofs of (2) and (4) are based on the inequality

fey) ~ f(x) + (y - x) f~ (x), (5)

valid for any convex function on (a, b) and arbitrary x, y E (a, b). The proof
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that (in the case of strict convexity) equality holds In (4) only if X is
constant /.i a.e. depends on the inequality

f(y) > f(x) + (y - x) f'+(x), (6)

valid for any strictly convex function on (a, b) and arbitrary distinct
x, y E (a, b).

To simplify typesetting, set

A = PJ!~(XI) XI + ... + Pnf'+(xn) x n
pJ!'+(xl ) + .. ,+ Pnf'+(xn)

To prove Theorem I, observe that A E (a, b) since A is a convex
combination of XI''''' x n ' and so by (5),

k = 1,,,., n.

Multiply the kth inequality by Pk and add the inequalities thus obtained; we
find

n n n
(PI + ... + Pn) f(A) ~ L Pkf(xk) +A .L Pkf~(Xk) - L Pkf'+(xk) xk'

k=1 k=1 k=t

and Theorem I is proved since

n n

A L Pkf'+ (xk) - L Pkf'+ (xk) x k = O.
k=1 k=l

We begin the proof of Theorem 2 by establishing inequality (4). The proof
is similar to that of (2). Set

A = IE (f~ 0 X) X d/.i
IE (f~ 0 X) d/.i

A E (a, b), and by (5), for every tEE,

f(A) ~ (f'+ 0 X)(t) + (A - X(t»(f'+ 0 X)(t).

Integrate this inequality with respect to /.i and observe that
A IE(f'+ 0 X) d/.i - IE(f~ 0 X)X d/.i = 0; (4) is immediate.

To complete the proof of Theorem 2, we consider the case of equality in
(4). If X is constant /.i a.e., then (4) is an obvious equality. We now show
that if we require f to be strictly convex, then for equality to hold in (4), it is
also necessary that X be constant /.i a.e.
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Since I is increasing and convexity is strict on (a, b), have f'+ > 0, and
Z: E -t R as defined by the equation

t loX dfi = (f 0 X)(t) + (f'+ 0 X)(t)(Z(t) - X(t)), (7)

is measurable on E.
From (3) and (4), and the continuity and strict monotonicity of I, we see

that there is a unique XoE (a, b) such that I(xo) = IE loX dfi. We rewrite
(7) as

Z( )
_ _ I(xo) - «(f 0 X)(t) + (xo - X(t))(f'+ 0 X)(t))

t Xo - (f~ 0 X)(t) . (8)

From (6), and the fact that 1'+ >0, we see that for all tEE, X(t) *" Xo if and
only if Z(t) > xo ' while X(t) = Xo if and only if Z(t) = x o'

Integrate both sides of (7) with respect to fi and divide by IE f'+ 0 X dfi.
We find

A = IE (/~ 0 X) Z dfi
IE (f~ 0 X) dfi '

(9)

where A is as defined above. If X is not constant fi a.e., then
E I = {t E E: X(t) *" xol = {t E E: Z(t) >xol has positive measure. Since
E\EI={tEE:Z(t)=xol, we see from (9) that A>xo' and so
IE loX dfi = I(xo) < I(A); thus the inequality in (4) is strict and the proof
of Theorem 2 is complete.

The following example illustrates one of the possibilities for equality in (4)
(more specifically, in (2)) when convexity is not strict. (A sketch will make
the construction clear.)

Suppose /;(x) = mix +bl' i = 1,2 and x E R, where 0< m l < mz. Define
1= Sup(II , Iz) and let X, j be defined by II (x) = Iz(x) = j. Suppose XI and
Xz are fixed points such that XI <x <Xz. j is in the open interval
(f(xl),/(xz)) and so there exist U I ' Uz >° such that u l + Uz = 1 and
UI I(x I) + UzI(xz) = j. An easy calculation shows that

_ ud'(xl ) XI +uzf'(xz ) Xzx-
- ud'(xl ) +uz/'(xz) .

(f'(x l ) = m l and I'(xz) = mz.) Thus

f( )+ I( ) =_=/(_)=/(UI/'(XI)XI+UZf'(Xz)xz)
UI XI U z XZ Y X I'() I'() .

U 1 XI +uz Xz



164 MORTON L. SLATER

3. ApPLICATIONS

In this section we give two applications, one of inequality (4) (which
yields a familiar result), and one of inequality (2) (which might be new).
Since all integrals are over E, we will drop "E" from the integral sign.

1°. Define f: R -4 R by f(x) = 0 for x <0 and f(x) = x P, p> 1, for
x ~ O. If X: E -4 R is non-negative, bounded, and measurable, and not a null
function, then from (4)

after rearranging we obtain

{( )1!(P-1) ( )I!PVXP-l dlJ < fXP dlJ .

(10)

(11 )

By familiar approximation techniques of real analysis, notably the Lebesgue
monotone convergence theorem, (11) can easily be shown to hold for all
non-negative extended real valued measurable X. With q > 0, replace X by
X'l and raise both sides of (11) to the Ijq. If we now set q = t - sand
p = tj(t - s), where 0 < s < t, we recover the well known result

if 0 < s < t. (12)

It is also well known that (12) holds if s < t <0; this too can be obtained
from (11) by first replacing X by 1jX, and then proceeding in a similar
fashion.

2°. Suppose g: {z: Izi <R} -4 C is analytic. Let M(r) =
Max {! g(z)l: Izi = r} for 0 <r <R. From the maximum modulus theorem
and the Hadamard three circles theorem we are able to conclude that
log M(r) is a convex increasing function of log r. That is, the composite
function log ° M ° exp is convex and increasing on (0, R). Since log and exp
have strictly positive derivatives, we conclude that the one-sided derivatives
M'+ and M'_ exist and satisfy M'_ <M'+ and that they are equal except for
at most countably many r E (0, R).

Take any rt> r 2 E (0, R) and aI' a 2 ~ 0 such that a\ + a 2 = 1. Hadamard's
inequality states

(13)
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the companion inequality, which will be proved below, states

where

165

(14)

fJ.= aiM'+(r;)r/M(r;)
I alM'+(rl) rl/M(rl) +a2 M'+(r2 ) rz/M(rz) '

i = 1,2.

We begin the proof by setting U1 = log rl' Uz = log rz, and with f: (-00,

log R) ..... R defined by feu) = log M(eU
), we apply inequality (2):

a l log M(eU,) + azlog M(eU,) (16)

~ 10 M (ex 1al[M'+(eUl)/M(eUl)) eUlu l + az[M'+(eU')/M(eU,)) eu,uz /).
"" g p a l [M'+(eU1)/M(eUl )) eU1 +az[M'+ (eU')/M(eU,)) eU' \

If we now apply exp to both sides of (16) and replace ul and Uz by log r l
and log rz respectively, we find

(M(rl))"l (M(rz))'"

M ( 1
adM'+(rl)/M(rl)) rllog r l +az[M'+ (rZ)/M(r2)) r 2 log rz!):s;; exp, ,

a l [M+(rl)/M(r l)) r1 + az[M+(r 2)/M(rz)) rz

= M(exp(f3l log r l +fJ2log rz))

= M(r~l r;'), and the proof is complete.

4. CONCLUDING REMARKS

Hardy, Littlewood, and Polya's "Inequalities," is still an excellent source;
all our "well known" results are to be found there.

For a discussion of the differentiability of M(r), Otto Blumenthal, "Uber
ganze transzendente Funktionen," Jahresbericht d. Deutschen Mathem.
Vereinigung, XVI, Heft 2, 1905, seems to be the best we could find.
M'+(r) >M'_(r) can occur. We remark that in (14), any M'+ may be
replaced by M'_ (or any value inbetween) and the inequality remains valid.
(In this connection, compare the remarks following the statement of Theorem
2.)

Besides the elementary convex monotone functions (e.g., f(x) = eX,
f(x) = x(log + x)k, k "> 1) which often provide useful companion inequalities,
there are other functions from analytic function theory whose companion
inequalities may be worth investigating. For example, the Nevan1inna
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characteristic T(r, f) of a m~romorphic f (see Einar Hille, "Analytic
Function Theory," Vol. II) is known to be an increasing convex function of
log r. Its differentiability properties were recently investigated by D. W.
Townsend (Abstracts A. M. S. Vol. 1, No.1, January 1980, Abstract 773
30-12).
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